If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-16t+64=-370
We move all terms to the left:
-16t^2-16t+64-(-370)=0
We add all the numbers together, and all the variables
-16t^2-16t+434=0
a = -16; b = -16; c = +434;
Δ = b2-4ac
Δ = -162-4·(-16)·434
Δ = 28032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28032}=\sqrt{64*438}=\sqrt{64}*\sqrt{438}=8\sqrt{438}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{438}}{2*-16}=\frac{16-8\sqrt{438}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{438}}{2*-16}=\frac{16+8\sqrt{438}}{-32} $
| 9y=5y2-2 | | 17x-8=11x+16 | | 15=1.5r | | -2(n-7)=-7n-19 | | x+3x+(x+4)=39 | | (8x-1)+(3x+4)+(3x+9)=90 | | (u/3)^2=100 | | 4x-2x+1x=21 | | 8y-7.5=6.5y+9 | | Y+6x-3=6x+4 | | 1083=570(1+0.18t) | | 3y^2=90 | | 4n+2-4=8n+4-3n | | 16^3x=2^2x-5 | | 46+4x=-6x,+76 | | -3x+8=-4x-2 | | -1/2+-3/5x=1/6x+3 | | 12=12=v-8/2 | | 8x+5=245 | | 0.5x=2.7 | | 10z+5(z+12)=0 | | 0.30x=61880-x | | -8a+6(a+7)=2 | | 36-12x=8x-1 | | 3w-33=-6(w+4) | | x+(0.2x)=9504 | | x(0.2x)=9504 | | x-(0.2x)=9504 | | (4x-5)+(2x+13)=6x+8 | | 2z=16-30 | | (3x–1)/(3x+2)=4 | | 3n+14+6n=23 |